Central Limit Theorem

CLT - Informal

Any sum of mutually independent, (identically distributed) random variables X1,,XkX_1,…,X_k with mean μ\mu and finite variance σ2\sigma^2 converges to a Gaussian random variable with mean kμk \cdot \mu and variance kσ2k \cdot \sigma^2, as kk \rightarrow \infty. S=i=1kXi(kμ,kσ2) S = \sum_{i=1}^k X_i \implies \mathcal(k \cdot \mu, k \cdot \sigma^2)


References:

  1. https://math.mit.edu/~sheffield/2018600/Lecture22.pdf